MX368011A PDC Software Operation Manual

Third Edition

To ensure that the equipment is used safely, read the "For Safety" in the MG3681A Digital Modulation Signal Generator Operation Manual first. Keep this manual with the equipment.

ANRITSU CORPORATION

MX368011A PDC Software Operation Manual

January 2001 (First Edition)
 November 2002 (Third Edition)

Copyright © 2001-2002, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

Equipment Certificate

Anritsu Corporation certifies that this equipment was tested before shipment using calibrated measuring instruments with direct traceability to public testing organizations recognized by national research laboratories including the Electrotechnical Laboratory, the National Research Laboratory of Metrology and the Communications Research Laboratory, and was found to meet the published specifications.

Anritsu Warranty

Anritsu Corporation will repair this equipment free-of-charge if a malfunction occurs within 1 year after shipment due to a manufacturing fault, provided that this warranty is rendered void under any or all of the following conditions.

- The fault is outside the scope of the warranty conditions described in the operation manual.
- The fault is due to mishandling, misuse, or unauthorized modification or repair of the equipment by the customer.
- The fault is due to severe usage clearly exceeding normal usage.
- The fault is due to improper or insufficient maintenance by the customer.
- The fault is due to natural disaster including fire, flooding, earthquake, etc.
- The fault is due to use of non-specified peripheral equipment, peripheral parts, consumables, etc.
- The fault is due to use of a non-specified power supply or in a non-specified installation location.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation will not accept liability for equipment faults due to unforeseen and unusual circumstances, nor for faults due to mishandling by the customer.

Anritsu Corporation Contact

If this equipment develops a fault, contact Anritsu Corporation or its representatives at the address in this manual.

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals are needed to be broken/shredded so as not to be unlawfully used for military purpose.

Trademark and Registered Trademark

MS, Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation of America and in other countries.

IBM and AT are registered trademarks of International Business Machines.

NI-488.2 is a registered trademark of National Instruments.

Disposing of Product

Electric circuits of this unit include arsenic. When disposing of this unit, be sure to follow the rules on disposal for each country and/or local government. Please contact Anritsu or our representatives for details on disposal.

Software License Agreement

Please read this Software License Agreement before using the accompanying software program (hereafter this software).

You are authorized to use this software only if you agree to all the terms of this License.

By opening the sealed package containing this software, you are agreeing to be bound by the terms of this License.

If you do not agree to these terms, return the unopened software package to Anritsu Corporation (hereafter Anritsu).

1. License

- This License gives you the right to use this software on one the MG3681A Digital Modulation Signal Generator (hereafter computer system).
- (2) To use this software on one computer system, this License allows you to make one copy of this software on the storage device of your computer system.
- (3) You must obtain a site license to use this software on more than one computer system even if such computer systems are not operating simultaneously.

2. Copyright

- (1) Although you are licensed to use this software, Anritsu retains the copyright.
- (2) Although you have purchased this software, rights other than those specified in this License are not transferred to you.
- (3) You may not print, copy, modify, create derivative works, incorporate in other software programs, decompile or disassemble this software in whole or in part, without obtaining prior written permission from Anritsu.

3. Copying

Notwithstanding item (3) of section 2 above, you may make one copy of this software for backup purposes only. In this case, you may only use either the backup copy or the original copy of this software.

4. Termination

- Anritsu will deem this License to be automatically terminated if you fail to comply with any provision of this License. Upon termination, you will lose all rights to this software.
- (2) Either party (Anritsu or yourself) to this Software License Agreement may terminate this Agreement by giving 1 months notice in writing to the other party.
- (3) Upon termination of this License for any reason, you must either immediately destroy this software and related documentation, or return it to Anritsu.

CE Marking

Anritsu affixes the CE Conformity Marking on the following product (s) in accordance with the Council Directive 93/68/EEC to indicate that they conform with the EMC directive of the European Union (EU).

CE Conformity Marking

1. Product Name/Model Name

Product Name: PDC Software Model Name: MX368011A

2. Applied Directive

- EMC: Council Directive 89/336/EEC
- LVD: Council Directive 73/23/EEC

3. Applied Standards

When the MX368011A is installed in the MG3681A, the applied standard conforms to the standards of MG3681A.

Anritsu affixes the C-tick marking on the following product (s) in accordance with the regulation to indicate that they conform with the EMC framework of Australia/New Zealand

C-tick marking

1. Product Name/Model Name

Product Name: PDC Software Model Name: MX368011A

2. Applied Standards

When the MX368011A is installed in the MG3681A, the applied standard conforms to the standards of MG3681A.

About This Manual

This Operation Manual describes overview, sample measurement and remote control of the MX368011A PDC Software.

MX368011A PDC Software is a system software installed in the MG3681A Digital Modulation Signal Generator loaded with the MU368010A TDMA Modulation Unit.

The "MG3681A Digital Modulation Signal Generator Main Unit Operation Manual" is optionally available. Refer to the manual in addition to this Operation Manual.

Table of Contents

About This Manual		
Secti	on 1 Overview	1-1
1.1	Product Overview	1-3
1.2	Product Configuration	1-4
1.3	Handling the Memory Card	1-5

Sectio	on 2 Operation Overview	2-1
2.1	Diagram of Screen Transition	2-3
2.2	Setting the Modulation Parameters	2-4
2.3	Setting the Symbol Adjust Function	2-14
2.4	Outputting I/Q Signal	2-15
2.5	Inputting/Outputting Auxiliary Signal	2-16

Phase Encode Function..... 2.6 2-22 Auxiliary Signal I/O Connector 2.7 2-23

Section 3 Operation Details..... 3-1

3.1	Frame Configuration	3-3
3.2	Slot Configuration	3-4
3.3	Standard Internal Modulation Data (Full rate)	3-7
3.4	Standard Internal Modulation Data (Half rate)	3-10
3.5	Trigger Function	3-12

Section 4 Measurement 4-1

- Measurement for the Bit Error Rate of the Receiver..... 4.1 4-3 4.2 Evaluation Measurement for Quadurature Demodulator ... 4-5
- 4.3 Evaluation Measurement for Modulator..... 4-6

Device Message List by Function 5.1 5-3 5.2 Device Message Details in Alphabetical Order..... 5-10

Section	on 6 Performance Test	6-1
6.1	Performance Test	6-3
6.2	Devices used for Performance Test	6-4
6.3	Output Level Accuracy	6-5
6.4	Modulation Accuracy for I/Q Signal	6-7
6.5	Modulation Accuracy for RF Output	6-9
6.6	Modulation Pattern	6-11
6.7	On/Off Ratio of Burst Wave	6-13

Appendix A	Standards	A-1
Appendix B	Default Value List	B-1
Appendix C	Performance Test Result Sheet	C-1
Index	li	ndex-1

Section 1 Overview

This section explains product overview and configuration of the standard accessories of the MX368011A PDC Software.

1.1	Product Overview	1-3
1.2	Product Configuration	1-4
1.3	Handling the Memory Card	1-5

- 1.3.1 Notes on handling the memory card 1-5
- 1.3.2 Storing the memory card 1-5

1.1 Product Overview

MX368011A PDC Software is a system software installed in the MU368010A TDMA Modulation Unit.

To use the PDC software, the MG3680 series Digital Modulation Signal Generator (main frame) should be mounted with the TDMA Modulation Unit.

Installing the PDC software in this unit makes it possible to output the PDC modulation signal for the Japanese digital cellular system.

1.2 Product Configuration

The standard configuration of MX368011A is shown in the table below. When unpacking it, verify that all of these items are included. If there are any missing or damaged items found, please contact Anritsu or our representative.

ltem	Model	Name	Quan tity	Remarks
Main unit	MX368011A	PDC Software	1	Applicable system: PDC (Provided with a compact flash card or ATA flash memory card)
Access ories	_	PC card adapter	(1)	Provided only with compact flash card
	W1836AE	Operation Manual	1	

1.3 Handling the Memory Card

This unit employs a memory card as the external memory medium for data and programs.

Handling of the memory card is described below.

1.3.1 Notes on handling the memory card

Do not wipe the memory card using alcohol or other chemicals. It may cause panel peeling or result in injury, etc.

Do not bend or drop the memory card, nor apply strong shock to it.

Do not place heavy objects on the memory card or apply strong shock to it by putting it into your seat pocket.

Do not apply water on the memory card or expose it to direct sunlight.

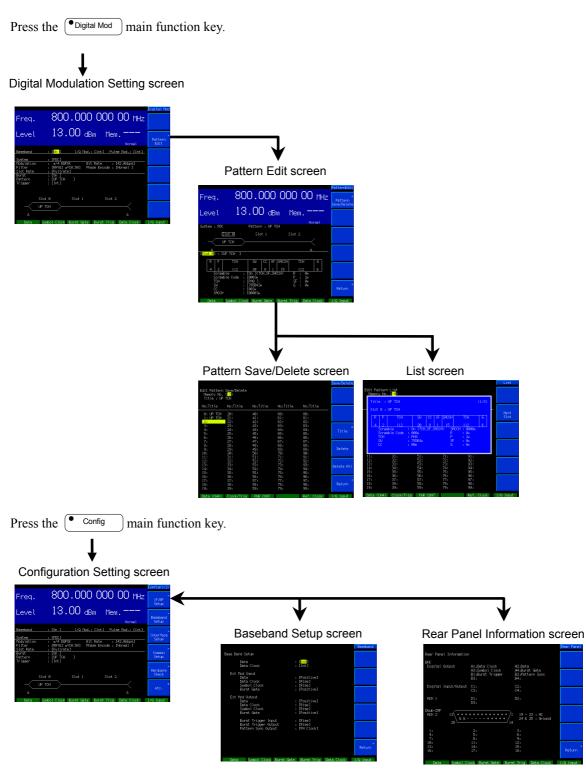
Do not disassemble the memory card or insert metal objects such as clips into the terminal.

1.3.2 Storing the memory card

When not using the memory card, store it in the provided case. Store it in a place at temperatures of 4 to 53°C and humidity of 8 to 90% (without condensation).

Avoid storing in a place where:

- It is very dusty or humid
- It is near to magnetized objects
- It may be exposed to direct sunlight
- It is near a heat source


Section 2 Operation Overview

This section explains basic screens, output method of I/Q signal and input/output method of auxiliary signal when MU368010A TDMA Modulation Unit, that installed with MX368011A TDMA Software, is mounted on this unit.

2.1	Diagram of Screen Transition	2-3
2.2	Setting the Modulation Parameters	2-4
	2.2.1 Setting on the Main screen	2-4
	2.2.2 Using memory function	2-7
2.3	Setting the Symbol Adjust Function	2-14
2.4	Outputting I/Q Signal	2-15
	2.4.1 Output level	2-15
2.5	Inputting/Outputting Auxiliary Signal	2-16
	2.5.1 Outputting auxiliary signal	2-16
	2.5.2 Inputting auxiliary signal	2-20
2.6	Phase Encode Function	2-22
2.7	Auxiliary Signal I/O Connector	2-23

2.1 Diagram of Screen Transition

The transition of the screens is as follows.

2.2 Setting the Modulation Parameters

2.2.1 Setting on the Main screen

Pressing the Digital Mod key lights a lamp and displays the Main screen. Basic parameters for digital modulation can be set on this screen. Setting contents for the Main screen are described below.

The triangle mark (\triangle) in the figure below indicates burst trigger signal timing for the frame.

Freq.	800.000 000 00 MHz	Digital Mod
Level	13.00 dBm Mem. ——— Normal	→ Pattern Edit
Baseband System Modulation	: [<mark>On]</mark> I/Q Mod.: [Int] Pulse Mod.: [Int] : [PDC] : π/4 DQPSK Bit Rate : [42.0kbps]	
Filter <u>Slot Rate</u> Burst Pattern Trigger	: [RNYQ] a=[0.50] Phase Encode : [Normal] : [Fullrate] : [On] : [UP TCH] : [Int]	
113901	Slot 0 Slot 1 Slot 2	
	UP TCH	
Data	Symbol Clock Burst Gate Burst Trig Data Clock	I/Q Input

[1] Baseband

Selects On/Off for I/Q signal output.

[2] I/Q Mod.

Selects I/Q signal source for quadurature modulation. Select "Int" to set the I/Q signal source to an internal one (using MX368011A), or "Ext" to set it to external input.

Default value: Int

[3] Pulse Mod.

Sets the controller signal for pulse modulator of the MG3680 series main unit.

Int: Selects the controller signal for TDMA modulation unit. When [9] Burst is set to On, the pulse modulator operates according to the burst timing. When Burst is set to Off, the pulse modulator is fixed to On. Normally set this item to Int.

- Ext: The pulse modulator operates with external input signals regardless of modulation setting. The external signal inputs to the Pulse Input Connector on the front of this unit.
- Off: The pulse modulator is fixed to On.

[4] System

Selects the communication system. When the PDC system is selected, modulation method (Modulation), roll-off rate (α) and bit rate (Bit Rate) are set as follows:

Communication system	Modulation method	Roll-off rate α	Bit rate
PDC	$\pi/4$ DQPSK	$\alpha = 0.5$	42.0 kbps

To select the PDC system, first select "TDMA" and then select "PDC".

[5] Bit Rate

Set the bit rate in the range of 37.8 to 46.2 kbps. When "PDC" is selected for [4] System, it is set to 42.0 kbps as default.

[6] Phase Encode

Selects Phase Encode function from "Normal" and "Inverse". See "2.6 Phase Encode Function" for details.

[7] Slot Rate

Select between "Full rate" and "Half rate". Select "Half rate" when using this unit as a PDC_H system for MG3680 series.

[8] Filter

Sets the type of baseband filter. Select between Root-Nyquist [RNYQ] and Nyquist [NYQ]. Roll-off rate can be set in the range of 0.4 to 0.6. When "PDC" is selected for "[4] System", it is set to 0.50 as default. Default value: RNYQ

[9] Burst

Sets the burst function to On/Off.

[10] Pattern

Selects the internal modulation data pattern. (This item cannot be set when "Data" in the Baseband Setup screen is set to "Ext".)

When the burst function is set to On:

Standard internal modulation data for the PDC system (see Section 3 "Function Details") or patterns saved in the internal modulation pattern memory can be set.

When the burst function is set to Off:

PN9, PN15 or repetition 4-bit (0000 to 1111) can be set.

[11] Trigger

When the burst function is set to On, the signal source of the burst trigger is set. Set to "Int" for the internal signal source or "Ext" for an external input.

- Int: Outputs burst wave synchronous with the burst trigger signal generated in the modulation unit.
- Ext: Outputs burst wave synchronous with the trigger signal inputted from the Burst Trig Input connector. When no trigger signal is inputted, no burst wave is outputted.

2.2.2 Using memory function

Saving the modulation data (Save)

The memory function of this unit can save up to 100 items of modulation data set in the Pattern Edit screen. Title (up to eight alphanumeric characters and symbols) can be added to the data. The procedure for saving the modulation data is described below.

* The saving area for the modulation data is shared with TDMA communication systems. It may be therefore impossible to save items 100 in the memory for the modulation data when a large amount of data for other system is saved.

Sample operation: Save currently set modulation data in memory No. 1 with the title "ABCDEF".

 Set the modulation data on the screen for digital modulation parameter setting and then press (F2) (Pattern Edit) to display the Pattern Edit screen.

Freq.	800.000 000 00 MHz	PatternEdit → Pattern Save/Delete
Level	13.00 dBm Mem	Dave/Detete
System : PDC	Pattern : UP TCH	
	ot 0 Slot 1 Slot 2	
(<mark>Slot 0</mark>] : [UF		
	le Code : [000]н Р : 2н	
TCH SW CC SACCH	: [PN9] SF: Он : [785B4]н G: Он : [00]н : [0000]н	, Return
Data	Symbol Clock Burst Gate Burst Trig Data Clock	I/Q Input

[2] On the Pattern Edit screen, press F1 (Pattern Save/Delete) to display the Pattern Save/Delete screen. The smallest No. that has nothing saved for it appears in "Memory No." at the upper left of the screen.

Save/Delete				(<mark>0</mark>)	Edit Pattern Memory No. Title : UP
	No:Title	No:Title	No:Title	No:Title	No:Title
	80:	60:	40:	20:	0:
	81:	61:	40:	20:	1:
	82:	62:	42:	22:	
*	83:	63:	43:	23:	2: 3:
Title	84:	64:	44:	24:	4:
11000	85:	65:	45:	25:	5:
	86:	66:	46:	26:	6:
	87:	67:	47:	27:	7:
	88:	68:	48:	28:	8:
	89:	69:	49:	29:	9:
	90:	70:	50:	30:	10:
	91:	71:	51:	31:	11:
	92:	72:	52:	32:	12:
	93:	73: 74:	53:	33:	13: 14:
	94: 95:	74: 75:	54: 55:	34: 35:	14:
	96:	76:	56:	36:	16:
→	97:	77:	57:	37:	17:
Return	98:	78:	58:	38:	18:
	99:	79:	59:	39:	19:
I/Q Input	Data Clock	Burst Trig	Burst Gate	Symbol Clock	Data

- [3] Move the inverse cursor for memory No. to memory No. 1 using cursor keys. "1" also appears on "Memory No." at the upper left of the screen.
- [4] Press F3 (Title) to display the screen for title input.

					Title
Edit Patterr Memory No. Title : UF	. (<mark>1</mark>)	ete Entry[<mark>]</mark> P	тсн ј		•
No:Title	No:T			No:Title	
0: <u>1:</u> 2:	20: 21: 22:	ABCDEFGHIJKLMN abcdefghijklmn 0123456789-+/= @[]{}:<>?_1	opqrstuvwxyz	80: 81: 82:	
3:	23:	Knob Step 01234	56789.– Cursor	82: 83: 84:	
4: 5:	24: 느 25:	45:	65:	85:	
6: 7:	26: 27:	46: 47:	66: 67:	86: 87:	
8: 9:	28: 29:	48: 49:	68: 69:	88: 89:	
10:	30:	50:	70:	90:	
11: 12:	31: 32:	51: 52:	71: 72:	91: 92:	
13: 14:	33: 34:	53: 54:	73: 74:	93: 94:	
15:	35:	55:	75:	95:	
16: 17:	36: 37:	56: 57:	76: 77:	96: 97:	
18: 19:	38: 39:	58: 59:	78: 79:	98: 99:	
Data	Symbol C	lock Burst Gat	e – Burst Trig	Data Clock	I/Q Input

- [5] Move the inverse cursor for characters to "A" using cursor keys. "A" also appears on "Entry" inverse cursor.
- [6] Press (F1) (▷) to move the inverse cursor in "Entry" to the right. Move the cursor for characters to "B" to input "B" to the inverse cursor position for "Entry".
- [7] Repeat Step [6] to input "ABCDEF" in "Entry", then press Set . The title for memory No. 1 is then set to "ABCDEF". Press Set once more to save the modulation data for memory No. 1 and return to the Main screen.
- [8] The inversed cursors for memory No. and characters can also be moved using the rotary knob or step keys.
- [9] To overwrite the modulation data on memory No. already being used, the confirmation window (Yes/No) appears when the memory No. is specified. Select "Yes" and then press Set to overwrite and save data.

Recalling the modulation data (Recall)

The memory function of this unit can recall the modulation data memory saved in the Pattern Edit screen. The data recalling procedure for the modulation data is shown below.

Sample operation: The title "ABCDEF" and memory No. 1 where the modulation data is saved are recalled.

Freq.	800.000 000 00 MHz	Digital Mod
Level	13.00 dBm Mem Normal	
<u>Baseband</u> System Modulation	: [On] I/Q Mod.: [Int] Pulse Mod.: [Int] : [PDC] : x/4 DQPSK Bit Rate : [42.0kbps]	
Filter <u>Slot Rate</u> Burst Pattern Trigger	: [RNYQ] a=[0.50] Phase Encode : [Normal] : [Fullrate] : [On] : [JP TCH DEVICE Knob : [Int] UP TCH Step	
11 19901	Slot 0	
$_{\Delta}$		
Data	Symbol Clock Burst Gate Burst Trig Data Clock	I/Q Input

[2] Select the memory and then press Set to open another small window.

[3] Pressing Set to select the pattern closes the two windows and recalls the selected data. To close the small window only, press Cancel.

When 10 or more memories are available, switch the saved memory display by pressing (F1) (Previous Page) and (F2) (Next Page).

Deleting the internal modulation data (Delete)

The memory function of this unit can delete the modulation data saved in the Pattern Edit screen. The data deleting procedure for the modulation data is shown below.

Sample operation: Delete the data saved in the memory No. 1.

[1] On the screen for the digital modulation parameter setting, press (F2) (Pattern Edit).

2.2 Setting the Modulation Parameters

U V	(/ 1 5		1 5
Edit Patterr Memory No. Title : UF					Save/Delete
No:Title	No:Title	No:Title	No:Title	No:Title	
0: 1: ABCDEF 2:	20: 21: 22:	40: 41: 42:	60: 61: 62:	80: 81: 82:	
2: 3: 4: 5: 6:	23: 24: 25: 26:	43: 44: 45: 46:	63: 64: 65: 66:	83: 84: 85: 86:	* Title
7: 8: 9: 10:	20: 27: 28: 29: 30:	40: 47: 48: 49: 50:	67: 68: 69: 70:	87: 88: 89: 90:	Delete
11: 12: 13: 14: 15:	31: 32: 33: 34: 35:	51: 52: 53: 54: 55:	71: 72: 73: 74: 75:	91: 92: 93: 94: 95:	Delete All
16: 17: 18: 19:	36: 37: 38: 39:	50. 56: 57: 58: 59:	76: 77: 78: 79:	90: 96: 97: 98: 99:	, Return
Data	Symbol Clock	k Burst Gate	Burst Trig	Data Clock	I/Q Input

[2] Pressing F1 (Pattern Save/Delete) displays the Pattern Save/Display screen.

- [3] Move the inversed cursor to memory No. 1 using cursor keys. "1" also appears on "Memory No." at the upper left of the screen.
- [4] Pressing (F2) (Delete) displays a Yes/No window to confirm delete operation.

Edit Pattern Memory No. Title : UP	(1)				
No:Title	Yes Knob <mark>No</mark> Step	:Title	No:Title	No:Title	
0:	20:	40:	60:	80:	
1: ABCDEF	21:	41:	61:	81:	
2:	22:	42:	62:	82:	
3:	23:	43:	63:	83:	
4:	24:	44:	64:	84:	
5:	25:	45:	65:	85:	
6:	26:	46:	66:	86:	
7:	27:	47:	67:	87:	
8:	28:	48:	68:	88:	
9:	29:	49:	69:	89:	
10: 11: 12:	29. 30: 31: 32:	50: 51: 52:	70: 71: 72:	90: 91: 92:	
13:	33:	53:	73:	93:	
14:	34:	54:	74:	94:	
15:	35:	55:	75:	95:	
16:	36:	56:	76:	96:	
17:	37:	57:	77:	97:	
18:	38:	58:	78:	98:	
19:	39:	59:	79:	99:	
Data	Symbol Clock		Burst Trig	Data Clock	I/Q Input

[5] Select "Yes" and then press Set . The Yes/No window disappears and data saved in the memory No. 1 is deleted.

The inversed cursor for memory No. can also be moved using the rotary knob or step keys.

Note:

Selecting (F5) (Delete All) in the Pattern Save/Display screen deletes all memory data on the screen.

Checking the saved internal modulation data (List)

The memory function of MX368011A enables the display of the modulation data list saved from the Pattern Edit screen to check them. The checking procedure for the saved modulation data is shown below.

Sample operation: Check the modulation data saved on memory No. 1.

[1] Pressing F2 (Pattern Edit) in the screen for digital modulation parameter setting displays the Pattern Edit screen.

Edit Patter Memory No Title : A	. (1)				List
No:Title	No:Title	No:Title	No:Title	No:Title	
0:	20:	40:	60:	80:	
1: ABCDEF	21:	41:	61:	81:	
2:	22:	42:	62:	82:	
3:	23:	43:	63:	83:	
4:	24:	44:	64:	84:	
5:	25:	45:	65:	85:	
6:	26:	46:	66:	86:	
7:	27:	47:	67:	87:	
8:	28:	48:	68:	88:	
9:	29:	49:	69:	89:	
10:	30:	50:	70:	90:	
11:	31:	51:	71:	91:	
12:	32:	52:	72:	92:	
13:	33:	53:	73:	93:	
14:	34:	54:	74:	94:	
15: 16: 17: 18: 19:	35: 36: 37: 38: 39:	55: 56: 57: 58: 59:	75: 76: 77: 78: 79:	95: 96: 97: 98: 99:	, Return
Data	Symbol Clock	k Burst Gate	Burst Trig	Data Clock	I/Q Input

[2] Pressing (F2) (Pattern List) displays the Pattern List screen.

[3] Move the inverse cursor to memory No. 1.

2.2 Setting the Modulation Parameters

[4] Pressing Set displays the setting window for the modulation data saved in memory No. 1 by one slot. Press F1 (Previous Slot) and F2 (Next Slot) to display the desired slot.

[5] When the checking is completed, press Cancel to close the setting window.

2.3 Setting the Symbol Adjust Function

In $\pi/4DQPSK$ modulation such as PDC, a modulation symbol consists of 2 bits. The synchronization status of the symbol therefore becomes unstable when inputting external data or data clock.

The Symbol Adjust function defines the synchronization status of the symbol. It consists of the "automatic synchronization function" and the "synchronization status change function".

Automatic synchronization function

This function synchronizes the external symbol clock inputted and the internal symbol when the setting allows symbol clock input. When a relevant symbol clock is inputted, the "Symbol Adjust" display from the function key disappears. At the same time, the internal symbol synchronization of this unit is adapted to the input symbol clock.

Synchronization status change function

When the setting allows symbol clock input and no external symbol clock is inputted, "Symbol Adjust" is displayed on the function key. Pressing (F1) (Symbol Adjust) in the screen for the digital modulation parameter setting changes the synchronization status of the symbol. Pressing (F1) again restores the synchronization status of the symbol.

Setting on the Baseb	Symbol Adjust	
Data Clock	Data	function
Int	Int	Disabled
Int	Ext	Enabled
Ext	Int	Enabled
Ext	Ext	Enabled

Status in which the Symbol Adjust function is enabled

Disabled: Symbol clock cannot be inputted. The Symbol Adjust key cannot be used.

Enabled: When a symbol clock is inputted, the unit operates in synchronization with it.

When no symbol clock is inputted, the synchronization status of the symbol becomes unstable. In this case, the synchronization status of the symbol can be changed by pressing the Symbol Adjust key.

2.4 Outputting I/Q Signal

Signal output from I/Q signal output on the front panel can be set to On/Off by setting baseband to On/Off. This also sets the auxiliary signal on the rear panel to On/Off.

2.4.1 Output level

The setting range of I/Q signal output level when PDC system is selected is shown in the table below.

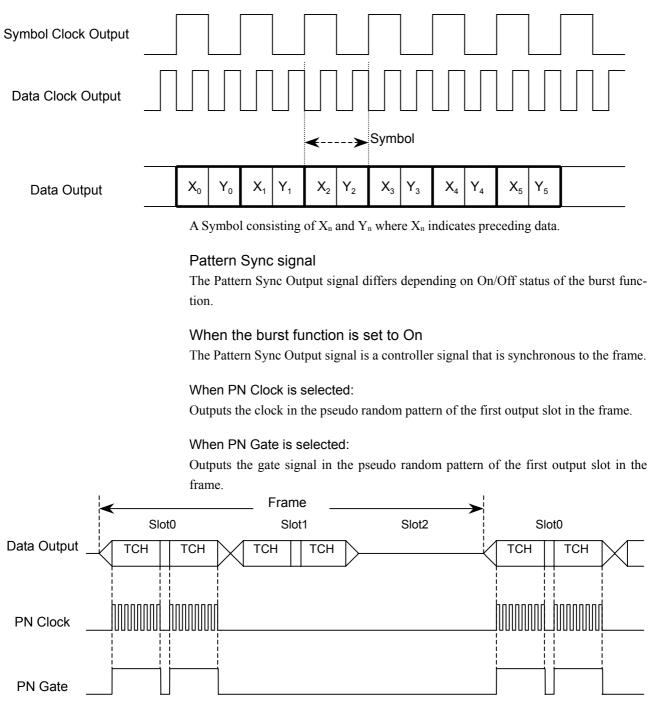
When the optional "MG3681A-11: Expansion I/Q Signal Output" is loaded, the output level can be changed to 80 to 120% of that in the table.

Refer to "3.4 Setting the Baseband Signal Output" in the Operation Manual for MG3681A (main unit) for the setting procedures.

I/Q level	Output impedance
500 mV (rms)	50 Ω

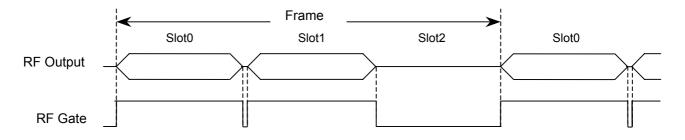
Definition of the I/Q signal output level

For the terminal voltage when pattern is set to "PN9": value for $\sqrt{l^2 + Q^2}$ Terminal impedance: 50 Ω

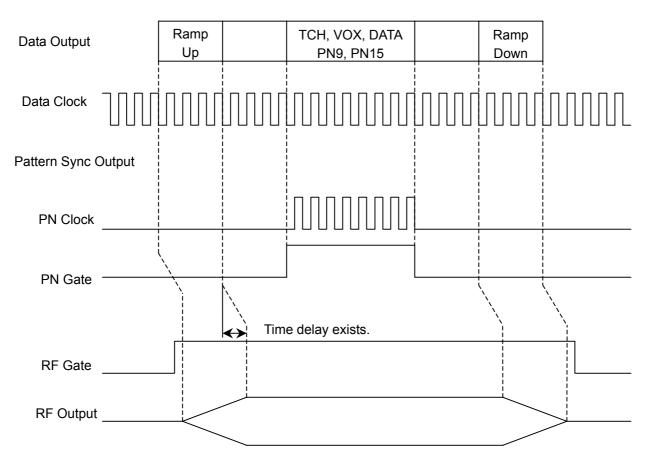

2.5 Inputting/Outputting Auxiliary Signal

2.5.1 Outputting auxiliary signal

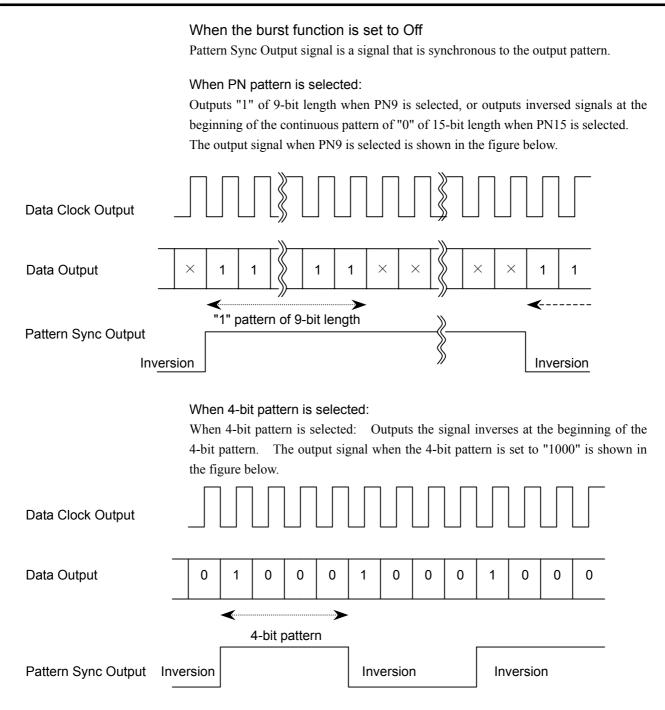
Details on auxiliary (controller) signal output from the rear of this unit is described below.


Data, Data Clock and Symbol Clock signals

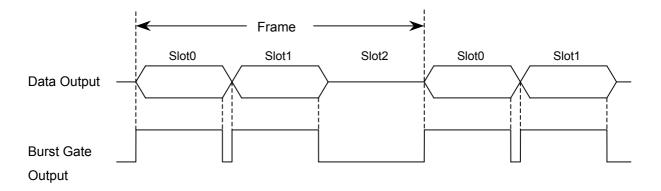
Output timing for Data, Data Clock and Symbol Clock signals are shown in the figure below. Polarity is indicated as Positive and Rise in the figure.



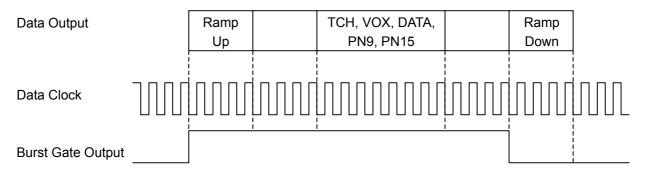
When RF Gate is selected:


Outputs the controller signal of the internal pulse modulator for the main unit.

Slot details are shown in the figure below. The slot format in the figure is a sample for description and differs from that of the actual system.



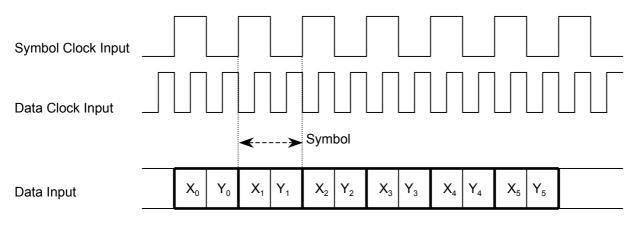
Section 2 Operation Overview



Burst Gate signal

Outputs a signal corresponding to the output slot when modulating with the burst function set to On and based on the internal pattern.

Slot details are shown in the figure below. The slot format in the figure is a sample for description and differs from that of the actual system.

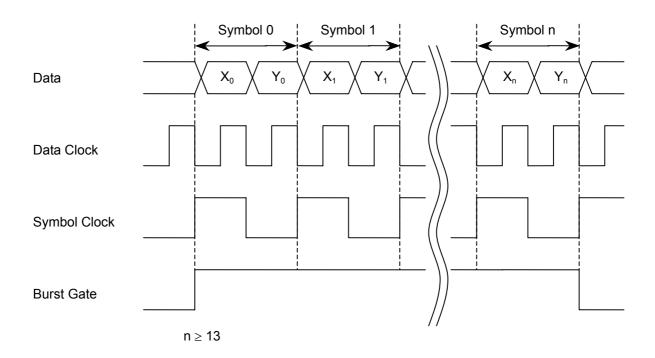


2.5.2 Inputting auxiliary signal

Details on auxiliary (controller) signal input to the front connector of this unit are described below.

Data, Data Clock and Symbol Clock signals

Input timing for Data, Data Clock and Symbol Clock signals are shown in the figure below. Polarity is indicated as Positive and Rise in the figure.


A Symbol consisting of X_n and Y_n where X_n indicates preceding data. When inputting one or two of the signals above, align the timing to the output signal of the signal that is not input.

2.5 Inputting/Outputting Auxiliary Signal

Burst Gate signal

The Burst Gate signal can be input when the burst function is set to On and using external data input. Input the signal with the same timing to data to generate an RF burst signal equivalent to the burst signal generated using an internal pattern. (Prevents spectrum from degrading by adding a smooth inclination to its rising and falling edges.)

Input timing for Data, Data Clock and Symbol Clock signals are shown in the figure below.

Note:

The corresponding symbol for the rising edge of power are 0 and 1, while n+1 and n+2 correspond to the falling edge.

Therefore, the range of the symbol that can be modulated at the receiver is symbol 2 to symbol n.

2.6 Phase Encode Function

This function inverts the phase change direction for the modulation data while changing the differential coding rule for $\pi/4DQPSK$ modulation. This function enables up/down inversion of the modulation wave spectrum with the transmission wave frequency as the center.

The differential coding rule is shown below.

	Phase change∆∳ [rad]						
XY	Normal	Inverse					
11	$-3\pi/4$	3π/4					
01	3π/4	$-3\pi/4$					
00	$\pi/4$	$-\pi/4$					
10	$-\pi/4$	$\pi/4$					

Differential coding rule for π /4DQPSK modulation

Note:

X and Y indicates symbols consisting of 2 bits where X indicates the preceding bit.

2.7 Auxiliary Signal I/O Connector

The I/O connector for the auxiliary signal does not show each signal name on the panel because it is used commonly with different communication system software. The auxiliary signal I/O terminals for the PDC system is shown below.

Front panel

The signal names for the BNC connector on the front panel are shown in the table below. They are also indicated at the bottom of the LCD display.

Connector Name	Auxiliary Signal Name
Digital Input 1	Data Input
Digital Input 2	Symbol Clock Input
Digital Input 3	Burst Gate Input
Digital Input 4	Burst Trigger Input
Digital Input 5	Data Clock Input

Rear panel

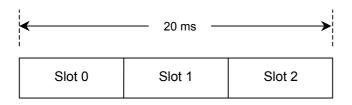
The signal names for the BNC connector on the rear panel are shown in the table below. They are also displayed on the Rear Panel Information screen.

Connector Name	Auxiliary Signal Name
A1	Data Clock Output
A2	Data Output
A3	Symbol Clock Output
A4	Burst Gate Output
B1	Burst Trigger Output
B2	Pattern Sync Output

To display the Rear Panel Information screen, press the \bigcirc main function key and then press \bigcirc (Hardware Check) and \bigcirc (Rear Panel Information) in this order.

Rear Panel Information	1		Rear Panel
BNC Digital Output	Al:Data Clock A3:Symbol Clock B1:Burst Trigger B3:	A2:Data A4:Burst Gate B2:Pattern Sync B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * G G -	* * * * * * * * * * * /1	19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	, Return
Data Symbol Cl	ock Burst Gate Burs	t Trig 🛛 Data Clock	I/Q Input

Section 3 Operation Details


This section describes details on PDC system operation, generated patterns and the trigger function.

3.1	Frame Configuration					
3.2	Slot Co	onfiguration	3-4			
	3.2.1	Device evaluation (DEVICE)	3-4			
	3.2.2	Up-Traffic channel (UP TCH)	3-4			
	3.2.3	Down-Traffic channel (DOWN TCH)	3-5			
	3.2.4	VOX control (UP VOX)	3-6			
3.3	Standa	ard Internal Modulation Data (Full rate)	3-7			
	3.3.1	DEVICE	3-7			
	3.3.2	UP TCH	3-7			
	3.3.3	UP TCH ALL	3-8			
	3.3.4	UP VOX	3-8			
	3.3.5	DOWN TCH (DN TCH)	3-8			
	3.3.6	DOWN TCH ALL (DN TCH ALL)	3-9			
3.4	Standa	ard Internal Modulation Data (Half rate)	3-10			
	3.4.1	DEVICE	3-10			
	3.4.2	UP TCH	3-10			
	3.4.3	UP TCH ALL	3-10			
	3.4.4	UP VOX	3-11			
	3.4.5	DOWN TCH (DN TCH)	3-11			
	3.4.6	DOWN TCH ALL (DN TCH ALL)	3-11			
3.5	Trigge	r Function	3-12			
	3.5.1	Internal trigger operation	3-12			
	3.5.2	External trigger operation	3-12			
	3.5.3	Output timing for burst trigger and				
		RF signals	3-14			
	3.5.4	Relationship between RF signal and symbol				
		determination point	3-16			

3.1 Frame Configuration

Full rate

PDC system consists of three slots of TDMA frame, the period for data generation. However, the PN9/PN15 pseudo random pattern of each slot is independent at each slot while possessing continuity.

Half rate

The PDC system consists of six slots of TDMA frame, the period for data generation. However, the PN9/PN15-layer pseudo random pattern of each slot is independent in each slot while possessing continuity.

«		4	40 ms —				
Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5		

3.2 Slot Configuration

There are four types of slots for device evaluation, up- and down-traffic channels and VOX control.

each

3.2.1 Device evaluation (DEVICE)

	R	PN	G	1				
	4	270	6					
R	: Guard period for burst transient response0 _H (4 bits)							
PN	: Pseud	Pseudo random pattern						
		slot (Pl	N pattern has continuit	y at the same slot)				
G	: Burst	transient response guard 0_H (6 b	its)					
[Catting no.		1						

[Setting parameter]

• PN

: PN9 or PN15 random pattern

3.2.2 Up-Traffic channel (UP TCH)

	[R	Р	ТСН	SW	СС	SF	SACCH	тсн	G	
		4	2	112	20	8	1	15	112	6	
R	R : Guard period for burst transient response0 _H (4 bits)										
Р											
TCH	: F	or us	ser i	nformation tra	nsfer			PN9 pseu	ido random pa	ttern in	ndependent by each
								slot (PN	pattern has c	ontinu	ity at TCH of the
								same slot)		
SW	: S	yncł	nron	ization word				Slot 0 = 7	785B4 _H (20 bi	ts)	
								Slot $1 = 6$	62DC9 _н (20 b	its)	
									7E28A _H (20 bi	ts)	
CC				le					,		
SF	: S	till f	lag.					0 _H (1 bit)	1		
SACCH	: S	low	add	itional control	channel.			0000 _H (1	5 bits)		
G	: G	uarc	l pe	riod for burst t	ransient	respon	se	0 _H (6 bits	s)		
Scrambling	funct	ion	(TC	H,SF,SACCH	H):			On			
Scramble co	de			:	:			000 _H (9 k	oits)		
[Setting par	rame	eter]									
• CC				:	: 00 _H to I	FF _н (8	bits	ts)			
 SACCH 				:	: 0000 _H t	to 7FF	F _H (_i (15 bits)			
• TCH	• TCH : PN9 or PN15 pseudo ran							udo randor	n pattern		
• SW $: 00000_{\text{H}} \text{ to FFFF}_{\text{H}} (20 \text{ bits})$											
 Scramblin 	ng fu	ncti	on	:	On/Off						
 Scramble 	• Scramble code $: 000_{\rm H}$ to $1FF_{\rm H}$ (9 k							oits)			

3.2.3 Down-Traffic channel (DOWN TCH)

R	Р	тсн	SW	сс	SF	SACCH	тсн
4	2	112	20	8	1	15	112

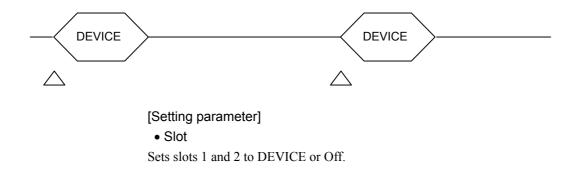
R	: Guard period for burst	transient response	0 _H (4 bits)		
Р	: Preamble		2 _H (2 bits)		
ТСН	: For user information tr	ansfer	PN9 pseudo random pattern independent by each		
SW	· Sumphronization word		slot (PN pattern has continuity at TCH of the same slot)		
300	. Synchronization word.		Slot 0 = $87A4B_{H}$ (20 bits)		
			Slot 1 = 9D236 _H (20 bits)		
	~		Slot 2 = $81D75_{H}$ (20 bits)		
CC	: Color code				
SF	: Still flag		0 _H (1 bit)		
SACCH	: Slow additional contro	l channel	000000 _H (21 bits)		
Scrambling	function (TCH,SF,SACC	CH):	On		
Scramble co	ode	:	000 _H (9 bits)		
[Setting pa	irameter]				
• CC		: $00_{\rm H}$ to $\rm FF_{\rm H}$ (8 bits	s)		
 SACCH 		: 000000 _H to 7FFF	FFF _H (21 bits)		
• TCH		: PN9 or PN15 pse	eudo random pattern		
• SW		: 00000 _H to FFFF _H (20 bits)			
• Scrambli	ing function	: On/Off			
• Scramble	e code	: 000 _H to 1FF _H (9	bits)		

3.2.4 VOX control (UP VOX)

G	R	Р	SW	сс	SF	SACCH	G
108	4	6	20	8	1	15	118

R	: Guard period for burs	t transient response	0 _H (4 bits)
G	: Guard period for burs	t transient response	0 _H (118 bits)
Р	: Preamble		26 _H (6 bits)
SW	: Synchronization word	l	Slot 0 = 785B4 _H (20 bits)
			Slot 1 = 62DC9 _H (20 bits)
			Slot 2 = 7E28A _H (20 bits)
CC	: Color code		00 _H (8 bits)
SF	: Still flag		0 _H (1 bit)
SACCH	: Slow additional control	ol channel	0000 _H (15 bits)
Scrambling	function (TCH,SF,SAC	CH):	On
Scramble co	de	:	000 _H (9 bits)
[Setting par	rameter]		
• CC		: 00_{H} to FF _H (8 bits	S)
 SACCH 		: 0000 _H to 7FFF _H ((15 bits)
• SW		: 00000 _H to FFFF _F	, (20 bits)
• Scrambli	ng function	: On/Off	
• Scramble	code	: 000 _H to $1FF_{H}$ (9 I	bits)

3.3 Standard Internal Modulation Data (Full rate)


The PDC system has six standard internal modulation data for each of the full and half rate. Select the standard internal modulation data at the item "Pattern" in the screen for the digital modulation parameter setting. This sub-section describes full rate while the next sub-section describes half rate.

Note:

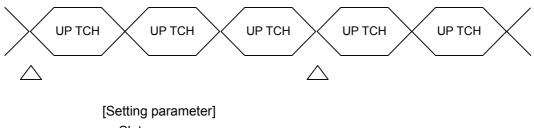
The triangle mark (ρ) in the figures below indicates the burst trigger position. It is impossible to set all of slot 0 to 2 to Off.

3.3.1 DEVICE

RF output when slot 0 is applied for the device evaluation slot.

3.3.2 UP TCH

RF output when slot 0 is applied for the up-traffic channel.


[Setting parameter]

Slot

Sets the slot 0 to UP TCH or OFF and slots 1 and 2 to one of UP TCH, VOX or Off.

3.3.3 UP TCH ALL

RF output when all of slot 0 to 2 are applied for the up-traffic channel.

Slot

Sets the slots 0 to 2 to UP TCH, VOX or Off.

3.3.4 UP VOX

RF output when slot 0 is applied for VOX control.

Slot

Sets slot 0 to UP TCH or VOX and slots 1 and 2 to UP TCH, VOX or Off.

3.3.5 DOWN TCH (DN TCH)

RF output when slot 0 is applied for down-traffic channel. RF output is the continuous wave.

(Off slot outputs ALL "1".)

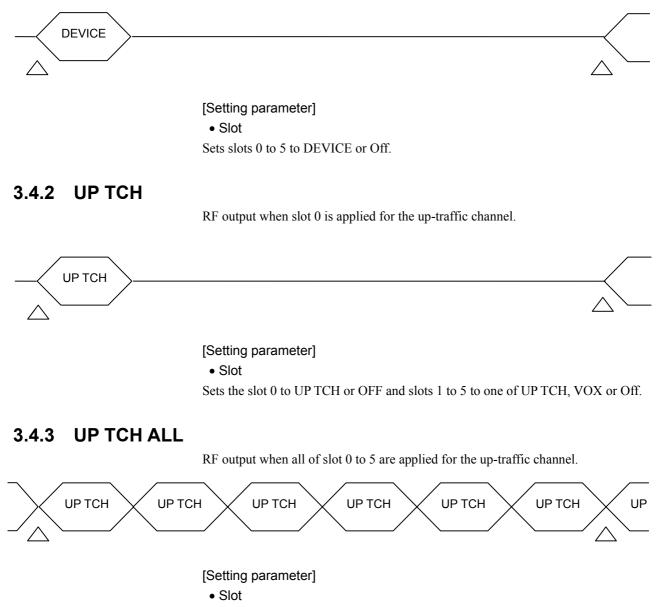
3.3.6 DOWN TCH ALL (DN TCH ALL)

RF output when all of slot 0 to 2 are applied for down-traffic channel. RF output is the continuous wave.

	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH
Ζ	\mathbf{Z}		Z	\sum		

[Setting parameter]

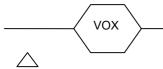
Slot


Sets the slots 0 to 2 to DOWN TCH or Off.

(Off slot outputs ALL "1".)

3.4 Standard Internal Modulation Data (Half rate)

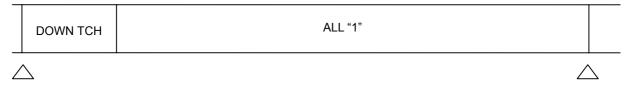
3.4.1 **DEVICE**


RF output when slot 0 is applied for the device evaluation slot.

Sets the slots 0 to 5 to one of UP TCH, VOX or Off.

3.4.4 UP VOX

RF output when slot 0 is applied for VOX control.


[Setting parameter]

Slot

Sets slot 0 to UP TCH or VOX and slots 1 to 5 to UP TCH, VOX or Off.

3.4.5 DOWN TCH (DN TCH)

RF output when slot 0 is applied for down-traffic channel. RF output is the continuous wave.

[Setting parameter]

Slot

Sets the slots 1 to 5 to DOWN TCH or Off. (Off slot outputs ALL "1".)

3.4.6 DOWN TCH ALL (DN TCH ALL)

RF output when all of slot 0 to 5 are applied for down-traffic channel. RF output is the continuous wave.

	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH	DOWN TCH	DO
Ζ	7	[Se	etting parameter]		Ĺ	7

Slot

Sets the slots 0 to 5 to DOWN TCH or Off.

(Off slot outputs ALL "1".)

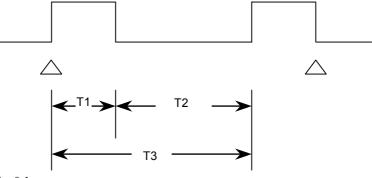
3.5 Trigger Function

When the burst function is set to on, there are two trigger functions for burst wave generation; the internal trigger operation and external trigger operation.

3.5.1 Internal trigger operation

This operation generates burst wave while synchronizing with the internal trigger signal. The internal trigger signal is outputted from the Burst Trig Output connector on the rear panel. The trigger signal is generated at the frame repetition period. The period for PDC system is 20 ms for full rate or 40 ms for half rate.

3.5.2 External trigger operation


This operation generates burst wave while synchronizing with the external trigger signal inputted. External trigger signal is inputted from the Burst Trig Input connector on the front panel.

(1) Input conditions for an external trigger signal

Input level: TTL level

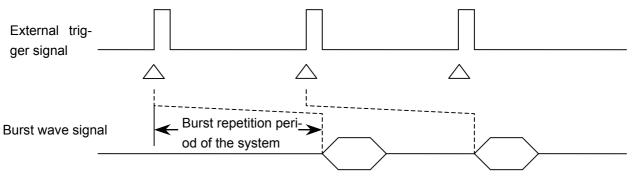
Polarity: Rising or falling edges can be selected

Waveform: Waveform of the rising edge is shown in the figure below.

T1 : 0.1 μ s or more

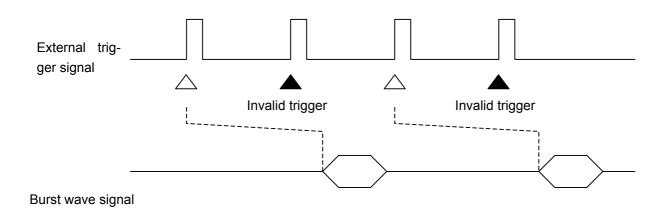
T2 : 0.1 μ s or more

T3 : Burst repetition period (frame period) \pm one symbol


Rising/falling time : 100 ns or less

Point:

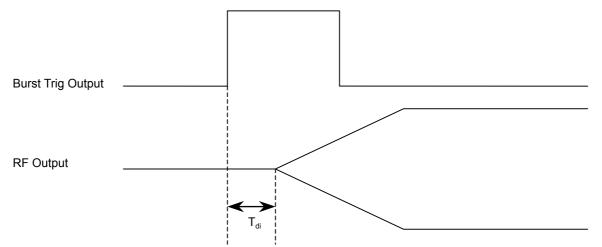
Ringing of the trigger signal waveform may cause malfunctioning.


In this case, insert a dumping resistor into the output edge of the trigger signal to weaken the waveform.

(2) Relationship between external trigger input signal and burst wave output The burst signal is outputted one burst repetition period behind the external trigger input signal.

Note:

When the external trigger input signal repetition period is lower than the input condition in (1), the trigger signal is masked, invalid triggers are generated as shown below and the burst wave corresponding to the trigger signal cannot be obtained.



3.5.3 Output timing for burst trigger and RF signals

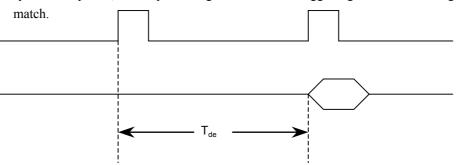
Care must be taken for the output timing of the burst trigger and output signal when synchronizing this unit with other equipment using its burst trigger signal. Output timing for the trigger and RF signals are shown in the figure below.

When using an internal trigger signal

Output timing for the RF signal when synchronizing this unit with other equipment using its Burst Trig Output signal (rear panel) is shown in the figure below.

 T_{di} : The internal trigger signal is the delay time for burst signal output, the time from the trigger signal to the rising edge of the first slot of the frame.

Relationship between PDC system and delay time $T_{\mbox{\tiny di}}$


PDC: 46.1 µs (typical value: not a standard)

Note:

The value for T_{di} includes errors caused by individual differences in the equipment. It is an equipment-specific value, not including jitter.

When using an external trigger signal

The output timing for the RF signal when synchronizing this unit with other equipment using its Burst Trig Input signal (front panel) is shown in the figure below. The RF signal is outputted one frame period (T_{de}) behind when the trigger signal is inputted. When the trigger signal of frame period according to the communication system is inputted, the output timing for the second trigger signal and the RF signal

 T_{de} : The external trigger signal is the delay time for burst signal output, the time from the trigger signal to the rising edge of the first slot of the frame.

When using an external trigger signal, the value of T_{de} varies according to the measure to synchronize the MG3681A (main unit) and the equipment generating trigger signal. The value of T_{de} for each synchronizing measure is shown below.

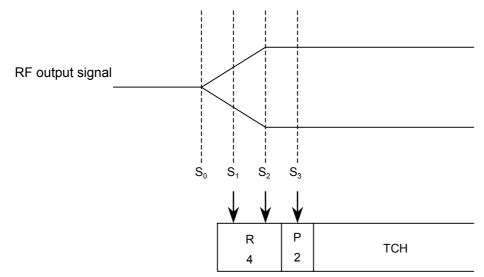
 T_{de} = Frame period of the communication system + $T_{di} \pm$ synchronization error (1/16 symbol)

T_{de} : Delay time when connected using trigger signal

 T_{di} : Delay time when using internal trigger signal

Synchronization error: Jitter of $\pm 1/16$ symbol range is generated because this unit and the external trigger signal generator are not synchronized.

Note:


Jitter is not generated when this unit and the external trigger signal generator are synchronized using a 10/13-MHz reference signal. However, it is not constant in the range of 1/16 symbol of the synchronization error.

Relationship between PDC system and delay time $T_{\rm de}$

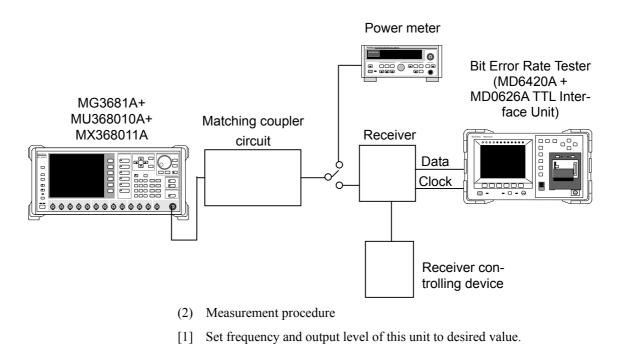
 $T_{de} = 20 \text{ ms} + (46.1 \pm 2.98) \text{ } \mu\text{s} \text{ (typical value: not a standard)}$

3.5.4 Relationship between RF signal and symbol determination point

The relationship between the RF signal and symbol determination point in the PDC system is shown in the figure below. The symbol determination point for the modulation data corresponding to the RF signal of Slot 0 of up-transmission channel is shown as an example.

- S1 : The first symbol point after the phase change corresponding to the lamp bit for the burst transient response
- S2 : The second symbol point after the phase change corresponding to the lamp bit for the burst transient response
- S_3 : The symbol point after the phase change corresponding to the pre-amble (Symbol movement corresponding to the pre-amble data is equivalent to the movement to S_2 and S_3 .)

The delay time from the burst trigger signal to the rising edge of the RF output is the time from the burst trigger signal to S_0 . See "3.5.3 Output timing for burst trigger and RF signals" for details.

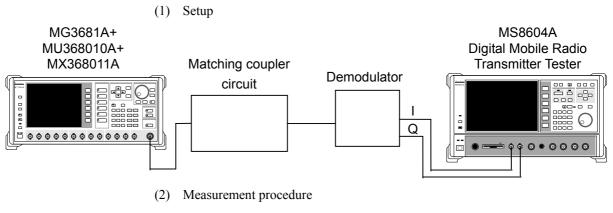

This section describes measurement for the bit error rate of the receiver and evaluation measurement for modulator and demodulator, with sample measurement using the PDC system.

4.1 Measurement for the Bit Error Rate of		
	the Receiver	4-3
4.2	Evaluation Measurement for	
	Quadurature Demodulator	4-5
4.3	Evaluation Measurement for Modulator	4-6

4.1 Measurement for the Bit Error Rate of the Receiver

This sub-section describes measurement for the bit error rate of the receiver when using the PDC system. Here we describe receivers that can be set to reception mode by an external controller without using call processing. The Anritsu MD6420A Data Transmission Analyzer is used as the bit error measuring device in the example below.

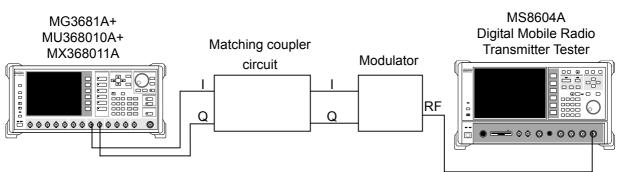
(1) Setup



- [2] Set the modulation method of this unit to "PDC".
- [3] Set the modulation pattern of this unit to one that can be received by the receiver such as "DN TCH".
- [4] Connect the RF output of this unit to the power meter via matching coupler circuit. Adjust the output level of this unit so that the sensitivity test level can be obtained at the power meter.
- [5] Switch the output of the matching coupler circuit to the receiver.
- [6] Set the receiver to reception mode using the receiver controlling device.

- [7] Connect the demodulated data output and data clock of the receiver to the signal error rate measuring device.
- [8] Connect the data and clock from the receiver to RD (Data) and RT (Clock) of the MD0626A (TTL Interface Unit) inserted into the rear panel of the MD6420A (bit error rate tester), respectively.
- [9] Set the reception timing for the MD6420A as follows.
 - RT (INV) mode when sampling data at the rising edge of the clock
 - RT mode when sampling data at the falling edge of the clock
- [10] Set the modulation pattern of the MD6420A to $2^9 1$ (PN9). However, the receiver outputs data only for the TCH part of the transmission channel.
- [11] Press MEAS of the MD6420A (bit error rate tester) to start the bit error rate measurement.

4.2 Evaluation Measurement for Quadurature Demodulator


This sub-section describes the evaluation measurement for the quadurature demodulator when using the PDC system. The Anritsu MS8604A Digital Mobile Radio Transmitter Tester is used in this example to evaluate the I/Q signal of the demodulator. (Option 03: I/Q Input Function is required to use the MS8604A.)

- [1] Set frequency and output level of this unit to desired value.
- [2] Set the modulation method of this unit to "PDC".
- [3] Set the modulation pattern of this unit to the PN9 pseudo random pattern.
- [4] Set the MS8604A (Digital Mobile Radio Transmitter Tester) to enable receiving the modulation method and pattern set in Steps [2] and [3].
- [5] Measure the modulation accuracy using the MS8604A to evaluate the demodulator. (Refer to the MS8604A Operation Manual for the operating method of the MS8604A.)

4.3 Evaluation Measurement for Modulator

This sub-section describes the evaluation measurement for the modulator when using the PDC system. The Anritsu MS8604A Digital Mobile Radio Transmitter Tester is used in this example to evaluate the modulation signal of the modulator.

(1) Setup

- (2) Measurement procedure
- [1] Set the I/Q signal output level of this unit to the proper level for the modulator and matching coupler circuit.
- [2] Set the modulation method of this unit to "PDC".
- [3] Set the modulation pattern of this unit to PN9 pseudo random pattern.
- [4] Set the MS8604A (Digital Mobile Radio Transmitter Tester) to enable receiving the modulation method and pattern set in Steps [2] and [3].
- [5] Measure the modulation accuracy using the MS8604A to evaluate the modulator. (Refer to the MS8604A Operation Manual for the operating method of the MS8604A.)

This section describes the details of the GPIB and RS-232C device messages in the form of functional lists and alphabetical order, in case that the MU368010A TDMA Modulation Unit installed with the MX368011A PDC Software is mounted to the MG3681A Digital Modulation Signal Generator.

Refer to "Section 4 Remote Control" in the "MG3681A Main Unit Operation Manual" for descriptions on other remote controls.

- 5.1 Device Message List by Function...... 5-3
- 5.2 Device Message Details in Alphabetical Order 5-10

5.1 Device Message List by Function

Command message and query message

The header field of the command message is represented by uppercase alphanumeric characters as a reserved word. The header field of the query message ends with "?". The argument section of the command message and the query message can contain multiple arguments delimited by a separator ",". Argument types are explained below:

[1] Uppercase characters	: reserved word
[2] Numeric	: reserved word
[3] Lowercase characters in	the argument section :
f (Frequency)	: numeric data (NR1, NR2, NR3)
Suffix code	: GHZ, GZ, MHz, MZ, kHz, KZ, HZ,
	In case of no unit, HZ is applied.
l (Level) (Relative value)	: numeric data (NR1, NR2, NR3 types)
Suffix code	: DB
	In case of no unit, DB is applied.
n (integer without unit)	: numeric data (NR1 type)
r (real number without unit) : numeric data (NR2 type)
h (hexadecimal without unit)) : numeric data (hexadecimal)
s (string)	: alphanumeric enclosed in " " or ' '.

Response message

This is a responding message returned to the external controller when the query message is received, which is represented by the form of "response header field + response data section". By delimiting the response data section by a separator ",", it may contain multiple response data. Response data types are explained below:

[1] Uppercase characters	: reserved word
[2] Numeric	: reserved word
[3] Lowercase characters in	n the argument section :
f (Frequency)	: numeric data (NR1 type)
Suffix code	: HZ
l (Level) (Relative form)	: numeric data (NR2 type)
Suffix code	: DB
n (integer without unit)	: numeric data (NR1 type)
- ,	
r (real number without unit	t) : numeric data (NR2 type)

h (hexadecimal without unit) : numeric data (hexadecimal)

Note:

When the header is set to Off, the header of the response message and the suffix code of the numeric data are not output. For On/Off setting of the header, refer to the separate volume "MG3681A Operation Manual".

Device message list

< Common >

Item		Device message	
Controlled item	Command message	Query message	Response message
I/Q Source Internal	MODE INT	MODE?	MODE INT
	IQSRC INT	IQSRC?	IQSRC INT
I/Q Source External	MODE EXT	MODE?	MODE EXT
	IQSRC EXT	IQSRC?	IQSRC EXT
I/Q Modulation Off	MODE OFF	MODE?	MODE OFF
	IQSRC OFF	IQSRC?	IQSRC OFF
System PDC (Full rate)	SYS PDC	SYS?	SYS PDC
System PDC (Half rate)	SYS PDC_H	SYS?	SYS PDC_H
Baseband ON	BASEBAND ON	BASEBAND?	BASEBAND ON
Baseband OFF	BASEBAND OFF	BASEBAND?	BASEBAND OFF
Pulse Mod. ON (External)	PMO ON	PMO?	PMO ON
Pulse Mod. OFF	PMO OFF	PMO?	PMO OFF
Pulse Mod. ON (Internal)	PMO INT	PMO?	PMO INT
Pulse Mod. ON (External)	PMO EXT	PMO?	PMO EXT
Digital	DIGITAL	_	DIGITAL

Section 5 Remote Control

< Modulation >

Item		Device message	
Controlled item	Command message	Query message	Response message
Bit Rate	BITRATE r	BITRATE?	BITRATE r
	r :37.8 to 46.2		
(Baseband) Filter Mode RNYQ	NYQ R	NYQ?	NYQ R
(Baseband) Filter Mode NYQ	NYQ N	NYQ?	NYQ N
Filter Roll Off Ratio	FILTROLL r	FILTROLL?	FILTROLL r
	r :0.40 to 0.60		
Phase Encode Normal	DPE NORM	DPE?	DPE NORM
Phase Encode Inverse	DPE INVS	DPE?	DPE INVS
Burst On	BST ON	BST?	BST ON
Burst Off FILTER SPEC	BST OFF	BST?	BST OFF
Pattern 0000 to 1111	PAT n	PAT?	PAT n
(Arbitrary4 bits)	n :0000 to 1111		
Pattern Device	PAT DEV	PAT?	PAT DEV
Pattern UP TCH	PAT UPT	PAT?	PAT UPT
Pattern UP TCH All	PAT UPTA	PAT?	PAT UPTA
Pattern UP Vox	PAT UPUX	PAT?	PAT UPUX
Pattern DN TCH	PAT DNT	PAT?	PAT DNT
Pattern DN TCH All	PAT DNTA	PAT?	PAT DNTA
Pattern SPM Number (0 to 99)	PAT MEM n	PAT?	PAT MEM n
	MEM n: MEM 00 to		
	MEM 99		
Burst Trigger Internal	BTG INT	BTG?	BTG INT
Burst Trigger External	BTG EXT	BTG?	BTG EXT
Symbol Adjust	SAD	_	_

5.1 Device Message List by Function

<	Pattern	Edit >
_	r allei II	

Item		Device message	
Controlled item	Command message	Query message	Response message
Pattern Edit	DIGBURST	_	DIGBURST
Slot Number	SLOTNO n	SLOTNO?	SLOTNO n
	n :0 to 5		n :0 to 5
PN for each slot	PN PN9	PN?	PN PN9
	PN PN15		PN PN15
Data selection for each slot	SLOT ON	SLOT?	SLOT ON
	SLOT OFF		SLOT OFF
	SLOT UPT		SLOT UPT
	SLOT VOX		SLOT VOX
Color code for each slot	CC h	CC?	CC h
	h :00 to FF		
SACCH for each slot	SACCH h	SACCH?	SACCH h
	h :0000 to 7FFF		
Synchronization word (SW) for	SW h	SW?	SW h
each slot	h :00000 to FFFFF		
TCH for each slot	TCH PN9	TCH?	TCH PN9
	TCH PN15		TCH PN15
Scramble selection for each slot	SCBL ON	SCBL?	SCBL ON
	SCBL OFF		SCBL OFF
Scramble code for each slot	SCBLC h	SCBLC?	SCBLC h
	h :000 to 1FF		

Section 5 Remote Control

< SPM Save/Delete >

Item	Device message		
Controlled item	Command message	Query message	Response message
Pattern Save	DIGSAVE	_	DIGSAVE
Burst Pattern Memory Save	BSAV n[,s]	-	-
	n :0 to 99		
	s :"Title"		

< SPM List >

Item	Device message		
Controlled item	Command message	Query message	Response message
Pattern List	DIGLIST	_	_

< Baseband Setup: Common >

Item		Device message	Device message		
Controlled item	Command message	Query message	Response message		
Baseband: Data Internal	MID INT	MID?	MID INT		
Baseband: Data External	MID EXT	MID?	MID EXT		
Baseband: Data Clock Internal	MIC INT	MIC?	MID INT		
Baseband: Data Clock External	MIC EXT	MIC?	MIC EXT		

< Baseband Setup: Ext. Mod. Input >

Item	Device message		
Controlled item	Command message	Query message	Response message
Data Input Input Positive	EID POS	EID?	EID POS
Data Input Input Negative	EID NEG	EID?	EID NEG
Data Clock Input Rise	EIC RISE	EIC?	EIC RISE
Data Clock Input Fall	EIC FALL	EIC?	EIC FALL
Symbol Clock Input Rise	EIS RISE	EIS?	EIS RISE
Symbol Clock Input Fall	EIS FALL	EIS?	EIS FALL
Burst Gate Input Positive	EIB POS	EIB?	EIB POS
Burst Gate Input Negative	EIB NEG	EIB?	EIB NEG

5.1 Device Message List by Function

< Baseband Setup: Ext. Mod. Output >

ltem		Device message		
Controlled item	Command message	Query message	Response message	
Data Output Positive	EOD POS	EOD?	EOD POS	
Data Output Negative	EOD NEG	EOD?	EOD NEG	
Data Clock Output Rise	EOC RISE	EOC?	EOC RISE	
Data Clock Output Fall	EOC FALL	EOC?	EOC FALL	
Symbol Clock Output Rise	EOS RISE	EOS?	EOS RISE	
Symbol Clock Output Fall	EOS FALL	EOS?	EOS FALL	
Burst Gate Output Positive	EOB POS	EOB?	EOB POS	
Burst Gate Output Negative	EOB NEG	EOB?	EOB NEG	

< Baseband Setup: Others >

Item	Device message		
Controlled item	Command message	Query message	Response message
Burst Trigger Input Rise	BTI RISE	BTI?	BTI RISE
Burst Trigger Input Fall	BTI FALL	BTI?	BTI FALL
Burst Trigger Output Rise	BTO RISE	BTO?	BTO RISE
Burst Trigger Output Fall	BTO FALL	BTO?	BTO FALL
Pattern Sync Output Mode	PSYNC PNCLK	PSYNC?	PSYNC PNCLK
	PSYNC PNCLK		PSYNC PNCLK
	PSYNC RFGAT		PSYNC RFGAT

5.2 Device Message Details in Alphabetical Order

< Example >

Message header	Detailed header name
FREQ	Frequency
Function	Set the frequency.
Command message	A space is required between the command message and f Value to input
Value of f	-2.99975 to 3GHZ : -2.99975 to 3 GHz -2999.75 to 3000MHZ : -2999.75 to 3000 MHz -2999750 to 3000000KHZ : -2999750 to 3000000 kHz -2999750000.00 to 300000000HZ : -2999750000.00 to 300000000 Hz
Query message	FREQ?
Response message	FREQ f
Application example	FREQ 123MHZ

BASEBAND

Baseband

Function	Sets On/Off for the baseband I/Q output.	
Command message	BASEBAND a	
Query message	BASEBAND?	
Response message	BASEBAND a	
Value of a	ON : Baseband On	
	OFF : Baseband Off	
Application example	BASEBAND ON	

BIT RATE

Bit Rate

Function	Sets data transmission speed for modulation.	
Command message	BITRATE r	
Value of r	37.8 to 46.2	: Bit rate (37.8 kbps to 46.2 kbps)
Query message	BITRATE?	
Response message	BITRATE r	
Application example	BITRATE 42.1	

B

BSAV	Burst Pattern Memory Save
Function	Saves the internal modulation data on memory
Command message	BSAV n[,s]
Value of n	0 to 99 : Pattern memory number
Value of s	Character string within 8 characters enclosed with double quotation marks ("
	") or single quotation marks (' ').
	When this value is omitted, the data is saved with the currently set title.
	If this value exceeds 8 characters, the first 8 characters are used as the title.

BSAV 5, "TEST01"

Application example

BST	Burst	
Function	Sets On/	Off for burst function.
Command message	BST a	
Query message	BST?	
Response message	BST a	
Value of a	ON	: Burst On
	OFF	: Burst Off
Application example	BST ON	l

BTG	Burst Trigger
Function	Sets the burst trigger signal to internal generation or external input.
Command message	BTG a
Query message	BTG?
Response message	BTG a
Value of a	INT : Internal (Internal generation)
	EXT : External (External input)
Application example	BTG INT

BTI	Burst Trigger Input	
Function	Sets polarity for the burst trigger input.	
Command message	BTI a	
Query message	BTI?	
Response message	BTI a	
Value of a	RISE : Rise (Rising)	
	FALL : Fall (Falling)	
Application example	BTI RISE	

В

В

BTO Burst Trigger Output

Function	Sets polarity for the burst trigger output	
Command message	BTO a	
Query message	BTI?	
Response message	BTO a	
Value of a	RISE : Rise (Rising)	
	FALL : Fall (Falling)	
Application example	BTI RISE	

CC

Color Code

Function	Sets color code data for each slot.
Command message	CC h
Query message	CC?
Response message	CC h
Value of n	h: 00 to FF (Color code)
Application example	CC 1F
Restrictions	Cannot be set when the internal modulation data is DEVICE, or Burst is set to
	Off.

DIGBURST

Pattern Edit Screen

Function
Command message
Response message
Application example
Restrictions

Moves to the Pattern Edit screen. DIGBURST DIGBURST DIGBURST Screen movement is not necessary when remotely changing parameters in the internal burst data generation screen.

DIGITAL	Digital Modulation
Function	Moves to the top screen for digital modulation.
Command message	DIGITAL
Response message	DIGITAL
Application example	DIGITAL

D

DIGLIST

Pattern List Screen

Function	Moves to the Pattern List screen.
Command message	DIGLIST
Response message	DIGLIST
Application example	DIGLIST

DIGSAVE	Pattern Save Screen
Function	Moves to the Pattern Save screen.
Command message	DIGSAVE
Response message	DIGSAVE
Application example	DIGSAVE
Restrictions	Screen movement is not necessary when remotely changing parameters in the
	internal burst data generation screen.

D

DPE

Phase Encode

Function	Sets Normal/Inverse for Phase Encode.	
Command message	DPE a	
Query message	DPE?	
Response message	DPE a	
Value of a	NORM : Normal	
	INVS : Inverse	
Application example	DPE NORM	

EIB

Burst Gate Input

Function	Sets polarity for data clock input.	
Command message	EIB a	
Query message	EIB?	
Response message	EIB a	
Value of a	POS	: Positive (Positive logic)
	NEG	: Negative (Negative logic)
Application example	EIB NEC	3

EIC

Data Clock Input

Function	Sets polarity for data clock input	
Command message	EIC a	
Query message	EIC?	
Response message	EIC a	
Value of a	RISE	: Rise (Rising)
	FALL	: Fall (Falling)
Application example	EIC RIS	E

EID

Data Input

Function	Sets polarity for data input.	
Command message	EID a	
Query message	EID?	
Response message	EID a	
Value of a	POS	: Positive (Positive logic)
	NEG	: Negative (Negative logic)
Application example	EID NEC	3

EIS	Symbol Clock Input
Function	Sets polarity for symbol clock input.
Command message	EIS a
Query message	EIS?
Response message	EIS a
Value of a	RISE : Rise (Rising)
	FALL : Fall (Falling)
Application example	EIS RISE

EOB

Burst Gate Output

Function	Sets polarity for burst gate output.	
Command message	EOB a	
Query message	EOB?	
Response message	EOB a	
Value of a	POS	: Positive (Positive logic)
	NEG	: Negative (Negative logic)
Application example	EOB POS	

EOC	Data Clock Output	
Function	Sets polarity for data clock output.	
Command message	EOC a	
Query message	EOC?	
Response message	EOC a	
Value of a	RISE : Rise (Rising)	
	FALL : Fall (Falling)	
Application example	EOC FALL	

EOD

Data Output

Function	Sets polarity for data output.	
Command message	EOD a	
Query message	EOD?	
Response message	EOD a	
Value of a	POS	: Positive (Positive logic)
	NEG	: Negative (Negative logic)
Application example	EOD POS	

EOS	Symbol Clock Output
Function	Sets polarity for symbol clock output.
Command message	EOS a
Query message	EOS?
Response message	EOS a
Value of a	RISE : Rise (Rising)
	FALL : Fall (Falling)
Application example	EOS FALL

FILTROLL

Filter Roll Off Ratio

Function	Sets the baseband filter factor.
Command message	FILTROLL r
Query message	FILTROLL?
Response message	FILTROLL r
Value of r	r : 0.40 to 0.60 (roll-off ratio α)
Application example	FILTROLL 0.40

IQSRC

I

I/Q Modulation Source

Function	Sets sign	al source for I/Q modulation.	
Command message	IQSRC a	IQSRC a	
Query message	IQSRC?		
Response message	IQSRC a		
Value of a	INT	: Internal (Internal modulation unit)	
	EXT	: External (External input)	
	OFF	: I/Q modulation Off (only pulse modulation can be performed)	
Application example	IQSRC I	NT	

MIC

Data Clock

Function	Sets data	clock signal to internal generation or external input.
Command message	MIC a	
Query message	MIC?	
Response message	MIC a	
Value of a	INT	: Internal
	EXT	: External

MID	Data
Function	Sets data signal to internal generation or external input.
Command message	MID a
Query message	MID?
Response message	MID a
Value of a	INT : Internal
	EXT : External
Application example	MID INT

Μ

MODE	I/Q Modulation Mode	
Function	Sets signal source for I/Q modulation.	
Command message	MODE a	
Query message	MODE?	
Response message	MODE a	
Value of a	INT : Internal (Internal modulation unit)	
	EXT : External (External input)	
	OFF : I/Q modulation Off (only pulse modulation can be performed)	
Application example	MODE INT	

NYQ

Baseband Filter Mode

Function	Sets the t	ype of baseband filter.
Command message	NYQ a	
Query message	NYQ?	
Response message	NYQ a	
Value of a	Ν	: Nyquist filter
	R	: Root Nyquist filter
Application example	NYQ N	

Ρ

PAT	Pattern	
Function	Sets the pattern.	
Command message	PAT a	
Query message	PAT?	
Response message	PAT a	
Value of a	When Burst Off:	
	PN9	: PN9 pseudo random pattern
	PN15	: PN15 pseudo random pattern
	0000 to 1111	: 4-bit binary pattern
	When Burst On:	
	DEV	: DEVICE
	UPT	: UP TCH
	UPTA	: UP TCH ALL
	UPVX	: UP VOX
	DNT	: DOWN TCH
	DNTA	: DOWN TCH ALL
	MEM00 to MEM99	9 : Contents of the pattern memory for the specified num- ber (00 to 99).
Application example	PAT PN9	
РМО	Pulse Modulation	
Function	Cata Internal/Eastern	
	Sets Internal/Extern	al and On/Off for pulse modulation.
Command message	PMO a	al and On/Off for pulse modulation.
Command message Query message		al and On/Off for pulse modulation.
-	PMO a	al and On/Off for pulse modulation.
Query message	PMO a PMO? PMO a	al and On/Off for pulse modulation. (generated by the modulation unit)
Query message Response message	PMO a PMO? PMO a INT : Internal	
Query message Response message	PMO aPMO?PMO aINTINTEXTEXT	(generated by the modulation unit)
Query message Response message	PMO aPMO?PMO aINTINTEXTStereordON	(generated by the modulation unit) l (external input)
Query message Response message	PMO aPMO?PMO aINTINTEXTStereordON	(generated by the modulation unit) l (external input) l (external input)

ΡN **PN** Pattern Select Function Sets PN for each slot. Command message PN a Query message PN? Response message PN a Value of a : PN9 pseudo random pattern PN9 : PN15 pseudo random pattern PN15 Application example PN PN9

PSYNC	Pattern Sync Output Mode	
Function	Sets the output mode for pattern synchronization signal.	
Command message	PSYNC a	
Query message	PSYNC?	
Response message	PSYNC a	
Value of a	PNCLK : Outputs PN clock at TCH Field	
	PNGAT : Outputs Gate Signal of TCH Field	
	RFGAT : Outputs Gate Signal of entire RF output slot	
Application example	PSYNC RFGAT	

SACCH

Slow Associated Control Channel

Function	Sets SACCH data for each slot.	
Command message	SACCH h	
Query message	SACCH?	
Response message	SACCH h	
Value of h	0000 to 7FFF	: SACCH data (hexadecimal)
Application example	SACCH 1F9AB	
Restrictions	This command is enabled only when the internal modulation data is not DE-	
	VICE, and data selection is set to UP TCH or UP VOX.	

SAD	Symbol Adjust
Function	Executes Symbol Adjust function.
Command message	SAD
Response message	-
Application example	SAD
Restrictions	This command is enabled when the Symbol Adjust key is displayed.

SCBL

Scramble

Function	Sets scramble for each slot to ON/OFF.	
Command message	SCBL a	
Query message	SCBL?	
Response message	SCBL a	
Value of a	ON : Scramble On	
	OFF : Scramble Off	
Application example	SCBL ON	

SCBLC	Scramble Code		
Function	Sets Scramble Code for each slot.		
Command message	SCBLC h		
Query message	SCBLC?		
Response message	SCBLC h		
Value of h	00000 to FFFFF : Scramble code (hexadecimal)		
Application example	SCBLC 1248C		

S

SLOT

Slot

Function	Sets each slot to ON/OFF.	
Command message	SLOT a	
Query message	SLOT?	
Response message	SLOT a	
Value of a	ON	: Slot On
	OFF	: Slot Off
	UPT	: Slot On at Uplink TCH
	UVX	: Slot On at Uplink VOX
Application example	SLOT OFF	

SLOTNO	Slot Number
Function	Sets the slot number.
Command message	SLOTNO n
Query message	SLOTNO?
Response message	SLOTNO n
Value of n	0 to 5 : Slot number
Application example	SLOTNO 5
Restrictions	Slot number 3 to 5 cannot be used when Slot rate is set to Full rate.

SYS

System

Function	Selects c	ommunication system.
Command message	SYS a	
Query message	SYS?	
Response message	SYS a	
Value of a	PDC	: PDC (Full rate)
	PDC_H	: PDC (Half rate)
Application example	SYS PD	С

SW	Synchronization Word	
Function	Sets synchronization word (SW) for each slot.	
Command message	SW h	
Query message	SW?	
Response message	SW h	
Value of h	00000 to FFFFF : Synchronization word data (hexadecimal)	
Application example	SW 1248F	
Restrictions	Cannot be set when the internal modulation data is DEVICE, or Slot is set to	
	Off.	

т

тсн

Traffic Channel

Function	Sets the contents of TCH data for each slot.	
Command message	TCH a	
Query message	TCH?	
Response message	TCH a	
Value of a	PN9	: PN9 pseudo random pattern
	PN15	: PN15 pseudo random pattern
Application example	TCH PN9	
Restrictions	This command is enabled only when the TCH is selected.	

Section 6 Performance Test

This section describes required measuring equipment, setup method, calibration and performance test procedures to check if the PDC software and TDMA modulation unit conform to the specification.

6.1	Performance Test	6-3
6.2	Devices used for Performance Test	6-4
6.3	Output Level Accuracy	6-5
6.4	Modulation Accuracy for I/Q Signal	6-7
6.5	Modulation Accuracy for RF Output	6-9
6.6	Modulation Pattern	6-11
6.7	On/Off Ratio of Burst Wave	6-13

6.1 Performance Test

Conduct a performance test to verify that the PDC software and TDMA modulation unit conform to the standard.

Conduct the test at the acceptance inspection, periodical inspection and after repairs to verify the performance of the MX368011A.

If the test indicates that the performance standards are not fulfilled, please contact the Anritsu service division.

Test items for the performance test of the PDC system are shown below.

- Modulation accuracy for I/Q signal
- Modulation accuracy for RF output
- Modulation pattern
- On/Off ratio of burst wave

For items deemed important, a performance test should be performed periodically as preventive maintenance. It is recommended to conduct the test once or twice a year.

Record the measurement result for the performance test by using "Appendix C Performance Test Result Sheet."

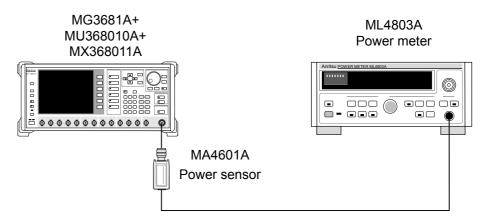
Warm up this unit and other devices used for more than 30 minutes before the performance test for stable operation of them. To obtain the best measurement accuracy, perform the test under room temperature with a stable AC power supply voltage, and avoid too much noise, vibration, dust or humidity.

6.2 Devices used for Performance Test

Performance Test Item	Recommended Device	Anritsu Product Model
Output level accuracy	Power meter	ML4803A
	Power sensor	MA4601A
Modulation accuracy for I/Q signal	Digital mobile radio transmitter tester	MS8604A Option 03, 11
Modulation accuracy for RF output	Digital mobile radio transmitter tester	MS8604A Option 11
Modulation pattern	Bit error rate tester	MD6420A, MD0626A TTL interface unit
On/Off ratio of burst wave	Spectrum analyzer	MS2683A

The devices used for a performance test of PDC system are shown below.

6.3 Output Level Accuracy


(1) Test standard

Level difference between CW and modulation: within $\pm 0.6 \text{ dB}$

(2) Measuring devices for test

Power meter:	ML4803A
Power sensor:	MA4601A

(3) Setup

- (4) Test Procedure
- [1] Set the communication system of this unit to "PDC".
- [2] Press the [Preset] key of this unit and then set the parameter below. Baseband : On
- [3] Set RF Output of this unit to Off.
- [4] Perform zero-point adjustment and sensitivity calibration of the power meter.
- [5] Set the output level of this unit to the desired value.
- [6] Set the frequency of this unit to the desired value.
- [7] Set the sensor calibration factor of the power meter and then measure the output level of this unit.
- [8] Press the [Preset] key of this unit and then set the parameter below.
 Baseband : On
 Digital Modulation : On

[9] Repeat Steps [3] to [7].


[10] Obtain the level difference from the results of Step [7] (CW) and [9] (when modulating).

6.4 Modulation Accuracy for I/Q Signal

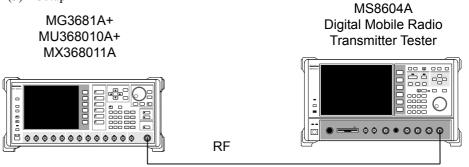
(1) Test standard

When Expansion I/Q Signal Output option (MG3681A-11) is not installed: $\leq 1.6\%$ (rms) (during continuous modulation with modulation pattern PN9) $\leq 1.7\%$ (rms) (during burst modulation with modulation pattern UP TCH) When Expansion I/Q Signal Output option is not installed: $\leq 3.0\%$ (rms) (during continuous modulation with modulation pattern PN9) $\leq 3.0\%$ (rms) (during burst modulation with modulation pattern UP TCH)

- (2) Measuring devices for test
 - Digital mobile radio transmitter testerMS8604A Required options of MS8604A for measurement Option 03: IQ input (required to analyze I/Q signal) Option 11: PDC software (required to analyze PDC signal)

- (4) Test procedure
- [1] Set the communication system of this unit to "PDC".
- [2] Press the [Preset] key of this unit and then set the parameter below. Baseband : On
- [3] Set MS8604A to be able to receive the modulation method and pattern set in Steps [1] and [2].
- [4] Measure the modulation accuracy using MS8604A to measure the I/Q signal.

[5]	Set the parameter below for this unit.		
	Burst	: On	
	Pattern	: UP TCH	
[6]	Set MS8604A to be	able to receive the modulation pattern set in Step [5].	
[7]		ation accuracy using MS8604A to measure the I/Q signal. 04A Operation Manual for its operation.)	


6.5 Modulation Accuracy for RF Output

Check the modulation accuracy for the RF modulation signal output.

(1) Test standard

At 10 MHz to 2.1 GHz 1.8% (rms) (output level: ≤+5 dBm, continuous modulation with modulation pattern PN9) 1.8% (rms) (output level: ≤+5 dBm, burst modulation with modulation pattern UP TCH)

- (2) Measuring devices for test
 - Digital mobile radio transmitter testerMS8604A Required options of MS8604A for measurement Option 11: PDC software (required to analyze the PDC signal)
- (3) Setup

- (4) Test procedure
- [1] Set the communication system of this unit to "PDC".

[2] Press the [Preset] key of this unit and then set the parameter below.

Baseband	: On
Digital Mod	: On
RF output level	: -10 dBm

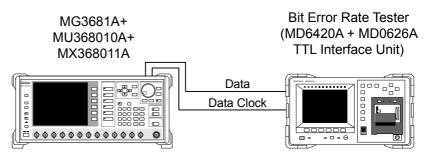
- [3] Set RF frequency of this unit to the desired measuring frequency.
- [4] Set MS8604A to be able to receive the parameters set in Steps [2] and [3].
- [5] Measure the modulation accuracy for RF modulation signal using MS8604A.
- [6] Set the parameter below for this unit.

Burst	: On
Pattern	: UP TCH

- [7] Set MS8604A to be able to receive the modulation pattern set in Step [6].
- [8] Measure the modulation accuracy for RF modulation signal using MS8604A. (Refer to the MS8604A Operation Manual.)

6.6 Modulation Pattern

Check the modulation pattern.


(1) Test standard

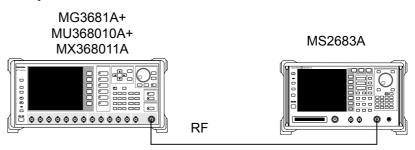
PN9 pseudo random patternWhen the burst function is set to Off PN9 pseudo random pattern on the slotWhen the burst function is set to On

(2) Measuring devices for test

 Data transmission analyzerMD6420A Required options of MD6420A for measurement MD0626A: TTL interface unit

(3) Setup

(4) Test procedure


Procedure for output level frequency characteristics test is described below.

- [1] Set the communication system of this unit to "PDC".
- [2] Press the [Preset] key of this unit and then set the parameter below. Baseband : On
- [3] Connect Data output and Data Clock output of this unit to the code error rate measuring device. (Connect Data and Clock to RD (DATA) and RD (CLOCK), respectively, of the MD0626A TTL interface unit inserted into the rear panel of the MD6420A.)
- [4] Set reception timing of MD6420A to RT (INV) mode.
- [5] Set modulation pattern of MD6420A to 2⁹-1 (PN9) mode.

[6]	Press the MEAS key of	MD6420A to measure the code error rate.
[7]	Set the parameter below	for this unit.
	Burst	: On
	Pattern	: UP TCH
[8] [9]	-	atput of SG to Clock input of the MD6420A. or Pattern Sync to PN Clock in the Baseband Set Up
[10]		f MD6420A to measure the code error rate. (Refer to n Manual for its operation.)

6.7 On/Off Ratio of Burst Wave

- (1) Test standard
 At 10 MHz to 2.1 GHz
 ≥65 dB at 5 dBm output
- (2) Measuring devices for test Spectrum analyzer.....MS2683A
- (3) Setup

- (4) Test procedure
- [1] Set the communication system of this unit to "PDC".
- [2] Press the [Preset] key of this unit and then set the parameter below.

Baseband	: On
Digital Mod.	: On
Burst	: On
RF output level	: +5 dBm

- [3] Set RF frequency of this unit to the desired measuring frequency.
- [4] Press the [Preset] key of the MS2683A and then set the parameter below. (Refer to the MS2683A Operation Manual for its operation.)

Ref Level	: +10 dBm
SPAN	: 0 Hz
RBW	: 30 kHz
VBW	: 30 kHz
Time Span	: 50 ms
Trig Source	: Video
Trig Level	: -30 dB

[5] Set RF frequency of MS2683A to that set in Step [3].

[6] Press the [Time] key of the MS2683A and then set the parameter below.

Detection : Average

Storage : Average

Average Count: 100

Observe the On/Off ratio for the output level at the time domain to measure the maximum and minimum level differences of the burst wave.

PDC Applicable system **Modulation method** π/4DQPSK Variable range: 37.8 to 46.2 kbps (standard: 42.0 kbps), resolution: 0.1 kbps **Transmission speed** Accuracy: Depends on the accuracy of the reference signal source for the MG3680 series main unit. Nyquist and root-nyquist, roll-off rate α : 0.40 to 0.60, resolution: 0.01 **Baseband filter** Continuous PN9/PN15 pseudo random pattern or repeated pattern of 4-bit data modulation Can output RCR STD27B-conformed data pattern Frame configuration 1) Full rate: Consists of three slots (Slots 0 to 2), frame period: 20 ms Slot 0 Slot 1 Slot 2 2) Half rate: Consists of six slots (Slots 0 to 5), frame period: 40 ms Slot 0 Slot 4 Slot 5 Slot 1 Slot 2 Slot 3 Slot configuration 1) For device evaluation (DEVICE) G ΡN R 4 270 6 PN: PN9 or PN15 2) Up-Traffic channel (UP TCH) RΡ TCH SW СС SF SACCH TCH G 4 2 6 20 8 112 112 1 15 TCH: PN9 or PN15 Modulation SW: 00000 to FFFFF data Burst CC: 00 to FF modulation SACCH: 0000 to 7FFF 3) Down-Traffic channel (DOWN TCH) RP TCH SACCH TCH SW CC SF 4 2 112 20 8 1 21 112 TCH: PN9 or PN15 SW: 00000 to FFFFF CC: 00 to FF SACCH: 000000 to 1FFFFF 4) VOX control (VOX) RΡ SF SACCH SW CC G G 4 6 108 20 8 1 15 118 SW: 00000 to FFFFF CC: 00 to FF SACCH: 0000 to 7FFF Scramble function On/Off of the scramble function and scramble code can be set. Slot for which the scramble function can be set: UP TCH, DOWN TCH, VOX scramble code: 000 to 1FF

(When installed to the MU368010A mounted to the MG3680 series)

Appendix A Standards

		Data Clock:	Clock input corresponding to the transmission speed	
			(input range: $\pm 1\%$ of the set transmission speed)	
		Data:	Data input synchronized with Data Clock	
	Input signal	Symbol Clock:	Clock input for the symbol definition synchronized with Data	
			Clock	
		Burst Gate:	Gate signal input for On/Off definition of burst signal	
		Burst Trig:	Trigger signal input synchronized with frame	
Auxiliary		Data Clock:	Clock output corresponding to the transmission speed	
signal		Data:	Data output synchronized with Data Clock	
Signal		Symbol Clock:	Clock output for the symbol definition synchronized with Data	
			Clock	
	Output signal	Burst Gate:	Gate signal output for On/Off definition of burst signal	
	Output Signal	Burst Trig:	Trigger signal output synchronized with frame	
		Pattern Sync.:	Signal output synchronized with PN9, PN15 or 4-bit pattern	
			(during continuous modulation)	
			On/Off signal output of gate or clock of TCH section, or RF	
			signal (during burst modulation)	
			681A-11 additional function of I/Q output is not mounted	
			(continuous modulation, pattern: PN9)	
			(burst modulation, pattern: UP TCH)	
	Vector accuracy	When the MG3681A-11 additional function of I/Q output is mounted		
			(continuous modulation, pattern: PN9)	
I/Q signal		≤3.0% (rms)	(burst modulation, pattern: UP TCH)	
		(Transmissio	n speed: 42.00 kbps, baseband filter: root-nyquist $\alpha = 0.5$)	
	Output level	$\sqrt{l^2 + Q^2} = 500 \text{ mV} \text{ (rms)}$		
		(Transmission speed: 42.0 kbps, baseband filter: root-nyquist $\alpha = 0.5$,		
		continuous modulation, pattern: PN9)		
	Frequency range	10 to 2100 MHz		
	Output level range			
	Level accuracy	$\pm 0.6 \text{ dB of the level for CW (output level: } \leq +5 \text{ dBm})$		
	Lever accuracy			
		≤1.8% (rms) (continuous modulation, pattern: PN9) ≤1.8% (rms) (burst modulation, pattern: UP TCH)		
	Vector accuracy	(Transmission speed: 42.0 kbps, baseband filter: root-nyquist $\alpha = 0.5$,		
		(Transmission speed: 42.0 kbps, based and filter: root-nyquist $\alpha = 0.5$, continuous modulation, pattern: PN9, output level: $\leq +5$ dBm)		
		$\leq -30 \text{ dBc}$	idiation, pattern. 1 199, output lever. 2+5 dBinj	
	Carrier leak		mode: 42.0 kbms, baseband filter: root provide $\alpha = 0.5$	
	Carrier leak	(Transmission speed: 42.0 kbps, baseband filter: root-nyquist $\alpha = 0.5$, continuous modulation, pattern: "0000", ambient temperature: 18 to 35°C)		
		\leq -40 dBc		
RF signal	Image rejection (Tra	\leq -40 dBC (Transmission speed: 42.0 kbps, baseband filter: root-nyquist $\alpha = 0.5$,		
			lulation, pattern: "0000")	
			Hz (50 kHz offset)	
		\leq -68 dBc/21 kHz (100 kHz offset) (Output level: 5 dBm, frequency: 810 to 958 MHz, 1429 to 1501 MHz,		
	Adjacent channel transm	(Output level: 5 dBm, frequency: 810 to 958 MHz, 1429 to 1501 MHz, transmission speed: 42.0 kbps, baseband filter: root-nyquist $\alpha = 0.5$, continuous		
		modulation, pat		
		(Excluding performance loss due to spurious generated by the MG3681A main unit)		
	Ratio of On/Off	unity		
	burst	≥65 dB (Output level: +5 dBm)		
Firmware ba used	ackup area to be	TDMA: 280 kb	yte, FPGA: 256 kbyte	

Appendix B Default Value List

Settings	Default Value
	Main screen for digital modulation
Bit Rate	42.00 kbps
Filter	RNYQ, $\alpha = 0.50$
Phase Encode	Normal
Slot Rate	Full Rate
Burst	Off
Pattern	PN9

Settings	Default Value	
	Baseband Setup screen	
Data	Int	
Data Clock	Int	
Ext Mod Input		
Data	Positive	
Data Clock	Rise	
Symbol Clock	Rise	
Burst Gate	Positive	
Ext Mod Output		
Data	Positive	
Data Clock	Rise	
Symbol Clock	Rise	
Burst Gate	Positive	
Burst Trigger Input	Rise	
Burst Trigger Output	Rise	
Pattern Sync Output	PN Clock	

Appendix C Performance Test Result Sheet

Test Location:		Report No.	
		Date	
		Person in charge of test	
Model	MG3681A Digital Modulation SG + MU368010A TDMA Modulation Unit +		
	MX368011A PDC Software		
Serial No.		Ambient temperature	°C
Power	Hz	Relative humidity	%
Remarks:			

Output level accuracy (Section 6.3)

Setting	Result	Maximum specification
Frequency		value
10 MHz		
50 MHz		
100 MHz		
300 MHz		
500 MHz		
800 MHz		
1000 MHz		±0.6 dB
1300 MHz		
1500 MHz		
1800 MHz		1
2000 MHz		
2100 MHz		1

Modulation accuracy for I/Q signal (Section 6.4)

Setting	Result	Maximum specification value
Burst Off		1.6% (rms) (3.0% (rms) When Option 11 installed.)
Burst On		1.7% (rms) (3.0% (rms) When Option 11 installed.)

Appendix C Performance Test Result Sheet

Setting Frequency	Result	Maximum specification value
10 MHz		
50 MHz		
100 MHz		
300 MHz		
500 MHz		
800 MHz		1.8 % (rms), Continuous wav
1000 MHz		1.8 % (rms), Burst wave
1300 MHz		
1500 MHz		
1800 MHz		
2000 MHz		
2100 MHz		

Modulation accuracy for RF signal (Section 6.5)

Modulation pattern (Section 6.6)

Setting	Result
Burst Off	\Box OK \Box NG
Burst On	\Box OK \Box NG

On/Off ratio of burst wave (Section 6.7)

Setting Frequency	Result	Maximum specification value
10 MHz		
50 MHz		
100 MHz		
300 MHz		
500 MHz		
800 MHz		
1000 MHz		≥65 dB
1300 MHz		
1500 MHz		
1800 MHz		
2000 MHz		
2100 MHz		

Index

A	Auxiliary signal 2-16
В	Baseband2-4Bit Rate2-5
	Burst 2-5
	Burst Gate
	Burst Trig 5-13
	Burst wave 3-13
С	
U	CC
D	
	Data 2-16
	Data Clock 2-16
	Delay time 3-14
	Differential coding 2-22
F	
	Filter 2-5
	Frame 2-16, 3-3, 3-12, 3-15
I	I/Q Mod
J	
	Jitter
Ρ	
	Pattern 2-5
	Pattern Sync 2-16
	Phase Encode
	PN Clock
	PN Gate
	Pulse Mod 2-4
R	
13	Recall
	RF Gate

Index

SACCH	3-4
Save	2-7
Scramble	3-4
SF	3-4
Slot Rate	2-5
SW	3-5
Symbol	2-16
Symbol Adjust	2-14
Symbol Clock	2-16
System	2-5

Т

S

ТСН	3-4
Timing	3-14
Trigger	2-6

V

VOX		2-7
-----	--	-----